Transcription factor families: muscling in on the myogenic program.
نویسندگان
چکیده
Embryonic skeletal muscle development has become a paradigm for understanding the molecular basis of how cell lineages are established and how cells differentiate into specialized structures. Most vertebrate muscles are derived from individual somites that produce two distinct muscle populations: the myotomal muscles that generate the axial and trunk musculature and a second migratory cell population that colonizes regions of the developing limbs. In both instances, muscle differentiation is accompanied by cell cycle arrest, fusion of individual myoblasts into multinucleate myotubes, and the transcriptional activation of muscle-specific genes. Recent experimental progress has led to greater understanding of the molecular mechanisms that control myogenesis in the embryo. Most of the advances have come from the identification and isolation of regulatory genes that are involved in controlling specific transcriptional events. In particular, the muscle regulatory factor (MRF) and myocyte enhancer factor 2 (MEF2) families have been implicated in establishing the myogenic lineage as well as controlling terminal differentiation. Two additional transcription factors, Pax-3 and MLP, also appear to play a role in the production of a mature muscle cell. This review focuses on these four vertebrate transcription factor families and discusses the experimental evidence that these factors play important, non-overlapping roles in regulating skeletal muscle development.
منابع مشابه
Application of myostatin in sheep breeding programs: A review
Myostatin or growth and differentiation factor 8 (GDF8), has been known as the factor causing double muscling phenotypes in which a series of mutations make the myostatin protein inactive, hence disabling it to regulate the deposition of muscle fibre. This phenotype happens with high frequency in a breed of sheep known as the Texel. Quantitative trait loci (QTL) studies show that a portion of t...
متن کاملSim2 prevents entry into the myogenic program by repressing MyoD transcription during limb embryonic myogenesis.
The basic helix-loop-helix transcription factor MyoD is a central actor that triggers the skeletal myogenic program. Cell-autonomous and non-cell-autonomous regulatory pathways must tightly control MyoD expression to ensure correct initiation of the muscle program at different places in the embryo and at different developmental times. In the present study, we have addressed the involvement of S...
متن کاملAn initial blueprint for myogenic differentiation.
We have combined genome-wide transcription factor binding and expression profiling to assemble a regulatory network controlling the myogenic differentiation program in mammalian cells. We identified a cadre of overlapping and distinct targets of the key myogenic regulatory factors (MRFs)--MyoD and myogenin--and Myocyte Enhancer Factor 2 (MEF2). We discovered that MRFs and MEF2 regulate a remark...
متن کاملProline Isomerase Pin1 Represses Terminal Differentiation and Myocyte Enhancer Factor 2C Function in Skeletal Muscle Cells*
Reversible proline-directed phosphorylation at Ser/Thr-Pro motifs has an essential role in myogenesis, a multistep process strictly regulated by several signaling pathways that impinge on two families of myogenic effectors, the basic helix-loop-helix myogenic transcription factors and the MEF2 (myocyte enhancer factor 2) proteins. The question of how these signals are deciphered by the myogenic...
متن کاملFate-determining mechanisms in epithelial–myofibroblast transition: major inhibitory role for Smad3
Epithelial-myofibroblast (MF) transition (EMyT) is a critical process in organ fibrosis, leading to alpha-smooth muscle actin (SMA) expression in the epithelium. The mechanism underlying the activation of this myogenic program is unknown. We have shown previously that both injury to intercellular contacts and transforming growth factor beta (TGF-beta) are indispensable for SMA expression (two-h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- FASEB journal : official publication of the Federation of American Societies for Experimental Biology
دوره 9 15 شماره
صفحات -
تاریخ انتشار 1995